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Intense gamma radiation can produce electron–positron pairs at sufficient density and scale to 

form a plasma [1]. The mass symmetry that defines a "pair plasma" is thought to suppress 

many of the instabilities that are common to conventional ion–electron plasmas [2]. Testing 

this hypothesis is one of the main objectives of APEX (A Positron Electron eXperiment) [3]. 

The aim is to create an electron–positron plasma and confine it over timescales pertinent to 

stability. Low-energy neutral plasmas will be created by combining non-neutral plasmas of 

electrons and positrons. The challenges associated with this task include (i) the construction 

of a trap that can simultaneously hold the oppositely charged leptons, and (ii) the 

accumulation and injection of sufficiently many positrons to produce a plasma. A compact, 

HTS (high-temperature superconductor) levitating dipole trap (LDT) has been built for the 

confinement of electron–positron plasmas, and so far long levitation (> 2 hr) and stable 

trapping of electron plasmas (> 2 s) have been achieved. In parallel to the LDT development, 

a lossless E×B-drift technique was recently adapted to inject bunches of positrons—

accumulated in a buffer-gas trap—into a supported dipole trap [4-6]. The pulsed beam was 

used to study transport in the inhomogeneous magnetic field and to trial schemes for merging 

collections of electrons and positrons. 
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Figure 1. Helium glow discharge in 

the APEX LDT. 

 


