Insight into the physics of laser-driven coils for optically-triggered generation of quasi-static magnetic fields

C. Vlachos^{1, 2}, P. Bradford¹, M. Ehret^{1,3}, V. Ospina-Bohórquez¹, G. Pérez-Callejo^{1,4},

V.T. Tikhonchuk¹, Iu. Kochetkov⁵, P. Korneev⁶, T. Chodukowski⁷, Z. Rusiniak⁷, M. Krupka⁸, R. Dudzak⁸, J.J. Santos¹, and T. Pisarczyk⁷

¹CELIA, Univ. Bordeaux-CNRS-CEA, UMR 5107, Talence, France

²Institute of Plasma Physics & Lasers, HMU Research Centre, 74100 Rethymno, Greece

³Centro de Láseres Pulsados, Building M5, Science Park, 37185 Villamayor, Salamanca, Spain

⁴Dep. Física Teórica Atómica y Óptica, Univ. Valladolid, Spain

⁵ ORCID 0000-0003-3704-0738

⁶ ORCID 0000-0002-5042-2936

⁷Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland ⁸Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czech Republic

Laser-driven coil (LDC) targets can generate magnetic-field (B-field) pulses of several ns duration via intense ns laser interactions. The laser-induced discharge current is guided by the target's geometry, which consists of a coil-shaped wire connecting two plates. Recent experiments deepen our understanding of LDC working principle. We used similar ns infrared laser intensities ($\sim 10^{15}$ - 10^{16} W/cm²) at the LULI2000 and PALS facilities. We generated coil currents of ~ 20 kA and ~ 12 kA yielding B-fields of ~ 50 T and ~ 30 T at the coil center, respectively, with targets of twice the inductance in the latter case. At LULI2000 the fields were characterized by dual-axis proton-deflectometry, which unraveled the superposed effects of both the B-field and E-fields due to static charging of the coil's wire surface [1]. At PALS, an optical probe laser allowed to simultaneously measure the coil's B-field by Faraday rotation across a nearby-placed birefringent crystal, and the density and self-generated B-field of the plasma plume between the two plates (understood as the discharge current source) by complex interferometry. Additional electron and X-ray diagnostics completed the physical characterization of the process. For the first time, we observe a correlation between coil current and plasma current between plates. Characterized discharge currents are consistent with predictions from a laser-driven diode-current source model.

[1] C. Vlachos et al., Physics of Plasmas, accepted (2024).