Laser-induced breakdown investigation in ultra-relativistic laser-solid interactions

<u>Constantin Bernert</u>^{1,2,†}, Stefan Assenbaum^{1,2}, Stefan Bock¹, Florian-Emanuel Brack¹, Thomas E. Cowan^{1,2}, Chandra B. Curry^{3,4}, Marco Garten^{1,8}, Lennart Gaus^{1,2}, Maxence Gauthier³, Rene Gebhardt¹, Sebastian Göde⁵, Siegfried H. Glenzer³, Uwe Helbig¹, Thomas Kluge¹, Stephan Kraft¹, Florian Kroll¹, Lieselotte Obst-Huebl^{1,8}, Thomas Püschel¹, Martin Rehwald¹, Hans-Peter Schlenvoigt¹, Christopher Schoenwaelder^{3,6}, Ulrich Schramm^{1,2}, Franziska Treffert^{3,7}, Milenko Vescovi¹, Tim Ziegler^{1,2}, Karl Zeil¹

¹ Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden, Germany
² Technische Universität Dresden, 01062 Dresden, Germany
³ SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
⁴ University of Alberta, Edmonton, Alberta T6G 1H9, Canada
⁵ European XFEL GmbH, 22869 Schenefeld, Germany
⁶ Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
⁷ Technische Universität Darmstadt, 64289 Darmstadt, Germany
⁸ Present address: Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
[†] c.bernert@hzdr.de

Research on Petawatt-class lasers-matter interaction gives rise to novel laser-plasmabased particle accelerators bearing potential for applications in medicine as well as inertial confinement fusion. Especially for laser-solid interactions, controlled interaction conditions are key. The acceleration of ions critically depends on the so-called target pre-expansion, driven by the leading edge of the pulse. Even before the ultra-relativistic peak interacts, the leading edge transforms the solid through a variety of different regimes of laser-plasma physics, e.g., laser-induced breakdown (LIB) [1] and collisional non-thermal equilibrium in the vicinity of relativistic laser intensities [2].

In this contribution, we utilize time-resolved off-harmonic optical shadowgraphy [3] to image the transition from the solid to the plasma state as well as subsequent plasma dynamics during the leading edge of a Petawatt laser with peak intensities of up to 6 x 10^{21} W/cm² in interaction with a cryogenic hydrogen-jet target [4]. The results show that LIB, i.e., the onset point of target pre-expansion, occurs much earlier than what is expected following the concept of barrier-suppression ionization. We highlight the dependence of LIB on laser-pulse duration in the context of the leading edge. Our results connect the field of LIB at lower laser intensity to research with Petawatt-class lasers at highest-available peak intensity.

[4] M. Rehwald, et al., "Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density", Nat. Commun. 14, 4009 (2023)

^[1] C. Bernert, et al., "Transient Laser-Induced Breakdown of Dielectrics in Ultrarelativistic Laser-Solid Interactions", Phys. Rev. Applied 19, 014070 (2023)

^[2] L. Yang, et al., "Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations", Commun. Phys. 6, 368 (2023)

^[3] C. Bernert, et al., "Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets", Sci. Rep. 12, 7287 (2022)